Arterial pressure oscillations are not associated with muscle sympathetic nerve activity in individuals exposed to central hypovolaemia.

نویسندگان

  • Kathy L Ryan
  • Caroline A Rickards
  • Carmen Hinojosa-Laborde
  • William H Cooke
  • Victor A Convertino
چکیده

The spectral power of low frequency oscillations of systolic arterial pressure (SAP(LF)) has been used as a non-invasive surrogate of muscle sympathetic nerve activity (MSNA) in both experimental and clinical situations. For SAP(LF) to be used in this way, a relationship must exist between SAP(LF) and MSNA within individuals during sympathetic activation. Using progressive central hypovolaemia to induce sympathetic activation, we hypothesised that SAP(LF) would correlate with MSNA in all subjects. ECG, beat-by-beat arterial pressure and MSNA were recorded in humans (n = 20) during a progressive lower body negative pressure (LBNP) protocol designed to cause presyncope in all subjects. Arterial pressure oscillations were assessed in the low frequency (LF; 0.04-0.15 Hz) domain using a Fourier transform. For the entire group, SAP(LF), MSNA burst frequency, and total MSNA increased during LBNP. Values for coefficients of determination (r(2)) describing the linear associations of SAP(LF) with MSNA burst frequency and total MSNA were 0.73 and 0.84, but rose to 0.89 and 0.98 when curvilinear fits were used, indicating that the relationship is curvilinear rather than linear. Associations between SAP(LF) and MSNA within each individual subject, however, varied widely for both MSNA burst frequency and total MSNA, whether derived by linear (r(2) range, 1.7 × 10(-6) to 0.99) or polynomial (r(2) range, 0.09 to 1.0) regression analysis. Similar results were obtained when relationships between low frequency oscillations in diastolic arterial pressure and MSNA were evaluated. These results do not support the use of low frequency oscillations in arterial pressure as a non-invasive measure of sympathetic outflow for individual subjects during sympathetic activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sex comparisons in muscle sympathetic nerve activity and arterial pressure oscillations during progressive central hypovolemia

Increased tolerance to central hypovolemia is generally associated with greater sympathoexcitation, high-frequency oscillatory patterns of mean arterial pressure (MAP), and tachycardia. On average, women are less tolerant to central hypovolemia than men; however, the autonomic mechanisms governing these comparisons are not fully understood. We tested the hypothesis that women with relatively hi...

متن کامل

Tonic and reflex control of the cardio-respiratory system by neurons in the ventral medulla

To investigate the channels and neurotransmitters in the ventrolateral medulla (VLM) oblongata that are responsible for the maintenance of sympathetic tone and cardio-respiratory reflex regulation. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM), calcium channel blockers, agonists and antagonists were made throughout the VLM in anaesthetized rats. Arterial blood pressure, sym...

متن کامل

Tonic and reflex control of the cardio-respiratory system by neurons in the ventral medulla

To investigate the channels and neurotransmitters in the ventrolateral medulla (VLM) oblongata that are responsible for the maintenance of sympathetic tone and cardio-respiratory reflex regulation. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM), calcium channel blockers, agonists and antagonists were made throughout the VLM in anaesthetized rats. Arterial blood pressure, sym...

متن کامل

Detection of low- and high-frequency rhythms in the variability of skin sympathetic nerve activity.

Spectral analysis of skin blood flow has demonstrated low-frequency (LF, 0.03-0.15 Hz) and high-frequency (HF, 0.15-0.40 Hz) oscillations, similar to oscillations in R-R interval, systolic pressure, and muscle sympathetic nerve activity (MSNA). It is not known whether the oscillatory profile of skin blood flow is secondary to oscillations in arterial pressure or to oscillations in skin sympathe...

متن کامل

Hyperventilation alters arterial baroreflex control of heart rate and muscle sympathetic nerve activity.

Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the alpha index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 589 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2011